If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+4x+21=180
We move all terms to the left:
x^2+4x+21-(180)=0
We add all the numbers together, and all the variables
x^2+4x-159=0
a = 1; b = 4; c = -159;
Δ = b2-4ac
Δ = 42-4·1·(-159)
Δ = 652
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{652}=\sqrt{4*163}=\sqrt{4}*\sqrt{163}=2\sqrt{163}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{163}}{2*1}=\frac{-4-2\sqrt{163}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{163}}{2*1}=\frac{-4+2\sqrt{163}}{2} $
| 2.4=−t/7.5 | | 2 | | −1+p7=−3 | | 29m=754 | | j-26=6 | | 25+x+120=180 | | 24/v+1=4/8 | | y−56 =y+118 | | 17−6=x | | 421x+7=9 | | u^2-4u-244=0 | | j-33=19 | | 5-20x=-135 | | 22=-3m | | 2x-5-3x=-x+9 | | 36=16+x | | -3x2+75=-150 | | -10k=20 | | 28.8/1.8=6.4/z | | 500=x(25-2x)(20-2x | | 4x-57=5 | | 9u-5u-2u=20 | | 2z=98 | | -8=-10+b | | 5q=31;q=31 | | -2k=-2 | | .5c+5=2c+20 | | 9-n=29 | | 2.17b=5 | | -7+8n+2=-8+5n | | 24.95=19.95+.1m | | g+18=1 |